24小时论文定制热线

热门毕设:土木工程工程造价桥梁工程计算机javaasp机械机械手夹具单片机工厂供电采矿工程
您当前的位置:论文定制 > 毕业设计论文 >
快速导航
毕业论文定制
关于我们
我们是一家专业提供高质量代做毕业设计的网站。2002年成立至今为众多客户提供大量毕业设计、论文定制等服务,赢得众多客户好评,因为专注,所以专业。写作老师大部分由全国211/958等高校的博士及硕士生设计,执笔,目前已为5000余位客户解决了论文写作的难题。 秉承以用户为中心,为用户创造价值的理念,我站拥有无缝对接的售后服务体系,代做毕业设计完成后有专业的老师进行一对一修改与完善,对有答辩需求的同学进行一对一的辅导,为你顺利毕业保驾护航
代做毕业设计
常见问题

面向生物医学的压电微机械超声换能器设计与制备研究

添加时间:2021/11/26 来源:未知 作者:乐枫
拥有良好压电响应且制备工艺已非常成熟的锆钛酸铅(PZT)薄膜依然是当前十分重要的 PMUT 核心压电材料,此外,研究人员发现在具有高声速、温度稳定性好、宽带隙等优势的氮化铝(AlN)薄膜中掺杂Ⅲ族过渡金属元素钪(Sc)能够明显改善其自身压电性能,这对 PMU
以下为本篇论文正文:

摘 要

  随着超声波传感器产业的发展趋势向微小型化、高集成度、低成本、高性能转变,基于微机电系统(Microelectromechanical Systems)的超声换能器应运而生。其中,具有几何结构简单、低阻抗、易集成等优势的压电式微机械超声换能器(Piezoelectric Micromachined Ultrasonic Transducer,PMUT)成为近年来研究的热点,并在生物医学超声成像方面有着重大应用价值。随着超声成像需求的不断提高,具有更高分辨率的高频超声换能器成为当下和未来的发展方向,这就需要PMUT 单元尺寸在微米尺度,具有良好的几何结构,并且采用高性能压电薄膜材料。拥有良好压电响应且制备工艺已非常成熟的锆钛酸铅(PZT)薄膜依然是当前十分重要的 PMUT 核心压电材料,此外,研究人员发现在具有高声速、温度稳定性好、宽带隙等优势的氮化铝(AlN)薄膜中掺杂Ⅲ族过渡金属元素钪(Sc)能够明显改善其自身压电性能,这对 PMUT 产业领域有着巨大吸引力。基于上述背景,本论文主要针对基于 PZT 薄膜和 Sc 掺杂 AlN(ScxAl1-xN)薄膜的 PMUT展开研究,进行了如下四个方面的研究工作:

  (1)研究了 Pt/Ti/SiO2/Si 衬底上 PZT 薄膜的晶体结构及电学性能,结果表明该 PZT 薄膜结构致密,常温下在 1 kHz 频率时损耗仅有 0.027,通过压电力显微镜对 PZT 薄膜微区进行表征,薄膜表现出良好的压电响应。然后,研究了Mo/SiO2/SOI 衬底上 Sc 含量为 29%的 Sc0.29Al0.71N 薄膜的晶体结构及其在高压的演化,结果表明 Sc0.29Al0.71N 薄膜各层分界清晰,通过电子衍射图分析得到薄膜表现为六方相多晶薄膜,并计算得到其晶格参数 a 和 c 分别为 3.0997 ? 和 4.9569?.此外,还研究了 Sc 元素在 Sc0.29Al0.71 薄膜中的结合形式以及 Sc0.29Al0.71 薄膜的晶体结构在高压下的演变行为,Sc0.29Al0.71 薄膜在 20 GPa 的高压下并没有产生纤锌矿到岩盐矿的相变,这表明该薄膜具有较强的耐高压特性。

  (2)采用有限元方法(Finite Element Method,FEM)建立了基于 PZT 薄膜的三维 PMUT 仿真模型,在(0,1)模态下,研究 PMUT 压电薄膜厚度和尺寸、顶部电极直径和形状、底部空腔直径和形状、衬底顶层硅厚度等一系列几何参数对PMUT 谐振频率、静态灵敏度、有效机电耦合系数(????eff2 )等性能的影响,实现了性能调控,研究发现底部空腔直径和顶层硅厚度能够对 PMUT 的谐振频率和静态灵敏度产生较为深刻的影响。此外,还对水域下 PMUT 模型的动态传输接收特性进行了模拟仿真,经几何优化后获得了基于 PZT 薄膜的高频 PMUT 三维有限元模型,其谐振频率可达 22.12 MHz,有效机电耦合系数为 5.13%,当反射物距离 PMUT 表面中心 300 μm 处时,相对脉冲回波灵敏度级约为-44.7 dB.

  (3)建立了基于 Sc0.29Al0.71 薄膜的 PMUT 三维有限元模型,经过几何优化后的 PMUT 模型其谐振频率可达 23.565 MHz,有效机电耦合系数为 2.5%,当反射物距离 PMUT 表面中心 300 μm 处时,相对脉冲回波灵敏度级约为-50.3 dB.

  此外,还尝试将沿[011]方向极化的 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-0.30PT)单晶薄膜应用于 PMUT 有限元模型中,探索了在不同顶部电极和底部空腔形状配置下的 PMUT 模型性能表现。研究发现,这种新型压电材料以及新型几何结构为今后实现 PMUT 性能的提升提供了可能。

  (4)根据 PMUT 建模仿真几何优化后的结构参数制备获得了基于 PZT 薄膜 PMUT 单元及 50×50 阵列原型器件并进行表征测试。结果显示 PMUT 单元底部空腔刻蚀情况良好,成功检测到 PMUT 单元器件(0,1)模态下的谐振频率为 25.87 MHz,根据脉冲回波测试得到回波信号最大幅值为 4.14 mV.本论文制备出的 PMUT 原型器件有望满足高分辨率生物医学超声成像应用的高频需求。

  关键词: PMUT;PZT 薄膜;ScxAl1-xN 薄膜;有限元仿真

  Abstract

  As the development trend of the ultrasonic sensor industry shifts to  microminiaturization, high integration, low cost, and high performance, ultrasonic  transducers based on Microelectromechanical Systems (MEMS) have emerged. Among  them, the Piezoelectric Micromachined Ultrasonic Transducer (PMUT), which has the  advantages of simple geometric structure, low impedance, and easy integration, has  become a research hotspot in recent years, and has great application value in biomedical  ultrasound imaging. As the demand for ultrasound imaging continues to increase, high-  frequency ultrasound transducers with higher resolution have become the current and  future development direction. This requires the PMUT unit size to be on the micron  scale, with a good geometric structure, and to use high-performance piezoelectric thin  film. Lead zirconate titanate (PZT) thin film with good piezoelectric response and  mature preparation process is still the current important PMUT core piezoelectric  material. In addition, the researchers found that doping group III transition metal  element scandium (Sc) in aluminum nitride (AlN) film with the advantages of high  sound velocity, good temperature stability, and wide band gap can significantly improve  its own piezoelectric properties, which has great appeal to the PMUT industry. Based  on the above background, this thesis mainly focuses on PMUT based on PZT film and  Sc-doped AlN (ScxAl1-xN) film, and has conducted the following three aspects of  research work:

  (1) The crystal structure and electrical properties of the PZT thin film on  Pt/Ti/SiO2/Si substrate were studied. The results showed that the PZT thin film had a  compact structure, and the loss was only 0.027 at a frequency of 1 kHz at room  temperature. The PZT thin film micro-domains were characterized by a piezoelectric  force microscope, and the thin film showed a good piezoelectric response. Then, the  crystal structure of Sc0.29Al0.71N thin film with a Sc content of 29% on Mo/SiO2/SOI  substrate and its changes under high pressure were studied. The results revealed that  Abstract Shanghai Normal University of Master Philosophy  the boundaries of each layer of the Sc0.29Al0.71N thin film were clear. The electron  diffraction pattern analysis showed that the thin film appeared to be a hexagonal  polycrystalline film. The lattice parameters a and c of Sc0.29Al0.71N thin film were  calculated to be 3.0997 ? and 4.9569 ?, respectively. In addition, the combination of  Sc element in the Sc0.29Al0.71N thin film and the evolution behavior of the crystal  structure of the Sc0.29Al0.71N thin film under high pressure was studied. There was no  wurtzite to rock salt ore phase transition under the high pressure of 20 GPa, indicating  that the film has strong high-pressure resistance.

  (2) The finite element method (Finite Element Method, FEM) was used to  establish three-dimensional PMUT simulation model based on PZT thin film. In the  (0,1) mode, the influence of a series of geometric parameters such as the thickness and  size of the PMUT piezoelectric film, the diameter and shape of the top electrode, the  diameter and shape of the bottom cavity, and the thickness of the silicon on the top of  the substrate, on the resonance frequency, static sensitivity, effective electromechanical  coupling coefficient (eff2 ) and other performance effects of the PMUT were studied.  The performance control was achieved. The study found that the bottom cavity diameter  and the top silicon thickness can have a profound impact on the resonant frequency and  static sensitivity of the PMUT. In addition, the dynamic transmission and reception  characteristics of the PMUT model under water are also simulated. After geometric  optimization, the three-dimensional finite element model of high-frequency PMUT  based on PZT thin film was obtained. Its resonant frequency can reach 22.71 MHz, and  the effective electromechanical coupling coefficient is 5.13%. When the reflector is 300  μm away from the center of the PMUT surface, the relative pulse echo sensitivity levelis about -44.7 dB.

  (3) A three-dimensional finite element model of PMUT was established based on  Sc0.29Al0.71 thin film. The resonant frequency of the PMUT model can reach 23.565  MHz, and the effective electromechanical coupling coefficient is 2.5%, after geometric  optimization. When the reflector is 300 μm away from the center of the PMUT surface,  the relative pulse echo sensitivity level is about -50.3 dB. In addition, an attempt was  made to apply [011] poled 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-0.30PT) thin film  to the PMUT finite element model, the performance of the PMUT model under different  top electrode and bottom cavity shape configurations was explored. The study found  that this new piezoelectric material and new geometric structure provide the possibility  to realize the improvement of PMUT performance in the future.  Shanghai Normal University of Master Philosophy Abstract

  (4) According to the optimized structural parameters of the PMUT modeling and  simulation geometry, the PMUT unit and the 50×50 array prototype devices based on  the PZT thin film were obtained and characterized. The results show that the cavity at  the bottom of the PMUT unit is well etched. It is successfully detected that the  resonance frequency of the PMUT unit device (0,1) mode is 25.87 MHz. The relative  pulse echo sensitivity level is calculated by the pulse echo result to be about -58.5 dB.  The PMUT prototype device prepared in this thesis is expected to meet the high-  frequency requirements of high-resolution biomedical ultrasound imaging applications.

  Keywords: PMUT; PZT thin film; ScxAl1-xN thin film; FEM simulation

  目录

  第 1 章 绪论

  1.1 引言

  法国科学家 Paul Langevin 在 1917 年第一次使用了石英晶体制作的超声换能器,同时采用超声对水下目标进行探测,并将该方法称为"水下定位法".这时,超声已作为工程技术出现[1].在过去的几十年里,超声波技术已经越来越广泛地在工业和生物医学中应用,例如医学成像,指纹传感,无损评估,粒子和细胞操纵[2-6].超声波传感器利用超声波换能器来实现声学和电学信号转换。随着对超声成像领域需求的不断提高,基于微机电系统(Microelectromechanical Systems,简 称 MEMS ) 的 超 声 换 能 器 应 运 而 生 , 它 被 称 为 微 机 械 超 声 换 能 器(Micromachined Ultrasonic Transducer,简称 MUT),相比于传统超声换能器,MUT 易于阵列化、集成化,具有微小型、更好的声耦合、更低的功耗等优势,近年来在医学超声成像和指纹传感领域开始得到了广泛的应用,MUT 已成为传统超声换能器的一种很有前途的替代方案。

  一般来说,根据工作原理的不同,MUT 可分为两类:电容式微机械超声换能器(Capacitive Micromachined Ultrasonic Transducer,简称 CMUT)和压电式微机械超声换能器(Piezoelectric Micromachined Ultrasonic Transducer,简称 PMUT)[7].其中,采用压电材料的正、逆压电效应工作原理的 PMUT 是近年来研究热点。

  随着新型压电材料的诞生与发展,基于新型几何结构和压电材料的 PMUT 为其应用开阔了市场,促使微小型化、高集成度、高性能、低成本成为智能超声波传感技术发展的新方向。因此,本论文将围绕面向生物医学成像的 PMUT 展开设计与制备方面的研究。

  1.2 微机械超声换能器的研究概述

  1.2.1 微机电系统简介

  1.2.2 电容式微机械超声换能器简介

  1.2.3 压电式微机械超声换能器简介

  1.3 生物医学超声成像概述

  1.3.1 超声成像原理与技术

  1.3.2 超声脉冲回波法

  1.4 压电材料的研究概述

  1.4.1 压电效应

  1.4.2 压电方程

  1.4.3 PMUT 压电材料的选择

  1.5 问题的提出与研究内容

  1.5.1 问题的提出

  1.5.2 研究内容

  第 2 章 实验内容与实验方法

  2.1 引言

  2.2 实验内容

  2.3 压电薄膜顶电极制备

  2.4 压电薄膜性能表征

  2.4.1 相结构表征

  2.4.2 显微结构表征

  2.4.3 电学性能表征

  2.4.4 高压拉曼表征

  2.4.5 电子结构表征

  2.5 PMUT 有限元模型的建模与仿真

  2.5.1 有限元方法

  2.5.2 COMSOL 建模仿真流程

  2.5.3 PMUT 三维有限元模型的建立

  2.6 器件结构性能表征

  第 3 章 压电薄膜的晶体结构与电性能研究

  3.1 引言

  3.2 PZT 薄膜的晶体结构与电学性能

  3.3 Sc0.29Al0.71N 薄膜的晶体结构及其在高压下的演化

  3.4 本章小结

  第 4 章 基于 PZT 薄膜的 PMUT 建模与性能调控

  4.1 引言

  4.2 基于 PZT 薄膜 PMUT 的建模仿真

  4.3 模态选择及性能参数评估

  4.4 压电层对 PMUT 性能的影响

  4.4.1 压电层厚度对 PMUT 性能的影响

  4.4.2 压电层面积对 PMUT 性能的影响

  4.4.3 基于不同压电材料的 PMUT 性能参数对比

  4.5 顶部电极对 PMUT 性能的影响

  4.5.1 电极面积对 PMUT 性能的影响

  4.5.2 电极形状对 PMUT 性能的影响

  4.5.3 电极材料对 PMUT 性能的影响

  4.6 底部空腔对 PMUT 性能的影响

  4.6.1 底部空腔直径对 PMUT 性能的影响

  4.6.2 底部空腔形状对 PMUT 性能的影响

  4.7 衬底顶层硅厚度对 PMUT 性能的影响

  4.8 PMUT 动态特性仿真

  4.9 本章小结

  第 5 章 基于 Sc0.29Al0.71N 薄膜的 PMUT 建模与性能调控

  5.1 引言

  5.2 基于 Sc0.29Al0.71N 薄膜 PMUT 的建模仿真

  5.3 几何结构对 PMUT 性能的影响

  5.3.1 顶部电极对 PMUT 性能的影响

  5.3.2 底部空腔对 PMUT 性能的影响

  5.3.3 衬底刻蚀深度对 PMUT 性能的影响

  5.4 PMUT 动态特性仿真

  5.5 采用新型压电材料的 PMUT 模型探索

  目录 上海师范大学硕士学位论文

  5.6 本章小结

  第 6 章 PMUT 器件制备与性能表征

  6.1 引言

  6.2 PMUT 器件制备

  6.3 器件结构表征

  6.4 位移频率响应测试

  6.5 脉冲回波测试

  6.6 本章小结

  第 7 章 总结与展望

  7.1 总结

  本论文选取 PMUT 重要压电材料 PZT 薄膜以及具有高性能的 Sc0.29Al0.71N薄膜展开了晶体结构及电学性能的研究,分别建立了基于这两种压电薄膜的高频PMUT 三维有限元模型,通过探究 PMUT 几何结构参数对其性能的影响从而实现了性能调控,并制备得到了高频 PMUT 原型器件。本文的主要结论有:

  (1)以 PZT 薄膜/Pt/Ti/SiO2/Si 和 Sc0.29Al0.71N 薄膜/Mo/SiO2/SOI 为对象对其相结构、显微结构、电子结构、电学性能等方面进行了研究,结果显示,PZT薄膜结晶质量良好,其压电响应明显,常温下 1 kHz 时 PZT 薄膜的相对介电常数为 2338,介电损耗仅为 0.027.Sc0.29Al0.71N 薄膜各层分界清晰,表现为六方相多晶薄膜,计算得到其晶格参数 a 和 c 分别为 3.0997 ? 和 4.9569 ?.此外,研究了 Sc0.29Al0.71 薄膜的晶体结构在高压下的演变行为,在 20 GPa 压力下并没有发生纤锌矿到岩盐矿的相变,这说明该薄膜的耐高压特性优良,硬度较高。具有高性能的压电薄膜为研制高性能压电微机械超声换能器的提供了基础。

  (2)采用有限元分析软件 COMSOL Multiphysics,分别建立了基于 PZT 薄膜和 Sc0.29Al0.71N 薄膜的高频 PMUT 三维模型,针对 PMUT(0,1)模态,充分研究了 PMUT 结构中的压电薄膜厚度和尺寸、顶部电极直径和形状、底部空腔直径和形状、衬底顶层硅厚度等多种几何参数对 PMUT 性能的影响,实现了性能调控,其中底部空腔直径和顶层硅厚度对 PMUT 谐振频率、静态灵敏度影响较大。

  此外,研究了水域下 PMUT 模型的动态传输接收特性。经过几何结构优化,基于 PZT 薄膜的 PMUT 模型的谐振频率可达 22.12 MHz,有效机电耦合系数(????eff2 )为 5.13%,当反射物距离 PMUT 表面中心 300 μm 处时,相对脉冲回波灵敏度级约为-44.7 dB.

  (3)建立了基于 Sc0.29Al0.71N 薄膜的 PMUT 三维有限元模型,经过模型几何优化,其谐振频率可达 23.565 MHz,有效机电耦合系数(????eff2 )为 2.5%,当反射物距离 PMUT 表面中心 300 μm 处时,相对脉冲回波灵敏度级约为-50.3 dB.

  此外,还尝试将沿[011]方向极化的 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-0.30PT)单晶薄膜应用于 PMUT 有限元模型中,探索了在不同顶部电极和底部空腔形状配置下的 PMUT 模型性能表现。研究发现,这种新型压电材料以及新型几何结构为今后实现 PMUT 性能的提升提供了可能。

  (4)依据 PMUT 建模仿真优化得到的几何结构参数制备了基于 PZT 薄膜PMUT 单元及 50×50 阵列原型器件。PMUT 单元底部空腔刻蚀情况良好,测试第 7 章 总结与展望 上海师范大学硕士学位论文68得到单元器件(0,1)模态下的谐振频率为 25.87 MHz,回波信号最大幅值为 4.14mV.本论文制备的 PMUT 原型器件满足了高分辨率超声成像应用的高频需求,这为进一步研制出新型高性能 PMUT 器件积累经验。

  7.2 展望

  鉴于目前已经取得的研究结果,为进一步实现具有高频高性能的 PMUT,如下工作仍需在此研究基础上有待开展:

  (1)进一步优化 PMUT 器件制备加工工艺,制备得到基于 Sc0.29Al0.71N 薄膜的高性能 PMUT 单元及阵列原型器件。

  (2)研究具有更高组分的 ScxAl1-xN 压电薄膜的晶体结构及压电性能,探究高压电性能背后的物理机制。

  (3)设计并建立具有新型几何结构的高性能 PMUT 阵列模型,研究 PMUT阵列模型的旁瓣指数、轴向声强等频域发射性能以及声场特性。

  参考文献

  [1] 万明习。 生物医学超声学[M]. 北京:科学出版社, 2010.

  [2] Drinkwater B W, Wilcox P D. Ultrasonic arrays for non-destructive evaluation: A review. NDT& e International[J]. 2006, 39(7): 525-541.

  [3] Jiang X, Kim K, Zhang S, et al. High-temperature piezoelectric sensing. Sensors[J]. 2014,14(1): 144-169.

  [4] Watson B, Friend J, Yeo L. Piezoelectric ultrasonic micro/milli-scale actuators. Sensors andActuators A: Physical[J]. 2009, 152(2): 219-233.

  [5] Qiu Y, Wang H, Demore C E M, et al. Acoustic devices for particle and cell manipulation andsensing. Sensors[J]. 2014, 14(8): 14806-14838.

  [6] Coakley W T, Bardsley D W, Grundy M A, et al. Cell manipulation in ultrasonic standing wavefields. Journal of Chemical Technology & Biotechnology[J]. 1989, 44(1): 43-62.

  [7] Qiu Y, Gigliotti J V, Wallace M, et al. Piezoelectric micromachined ultrasound transducer(PMUT) arrays for integrated sensing, actuation and imaging. Sensors[J]. 2015, 15(4): 8020-8041.

  [8] 高 世 桥 , 曲 大 成 . 微 机 电 系 统 (MEMS) 技 术 的 研 究 与 应 用 . 科 技 导 报 [J]. 2004,22(0404):17-21.

  [9] 包兴臻。 基于 MEMS 技术的集成 LED 微阵列器件研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2017.

  [10] 田文超。 微机电系统(MEMS)[M]. 西安:西安电子科技大学出版社,2009. 8-12

  [11] Oralkan O, Bayram B, Yaralioglu G G, et al. Experimental characterization of collapse-modeCMUT operation. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J].2006, 53(8): 1513-1523.

  [12] Khuri-Yakub B T, Oralkan ?. Capacitive micromachined ultrasonic transducers for medicalimaging and therapy. Journal of Micromechanics and Microengineering[J]. 2011, 21(5):054004.

  [13] Jang J H, Rasmussen M F, Bhuyan A, et al. Dual-mode integrated circuit for imaging and HIFUwith 2D CMUT arrays. 2015 IEEE International Ultrasonics Symposium (IUS) [C]. UnitedStates of America: IEEE, 2015. 1-4.

  [14] Jang J H, Chang C, Rasmussen M F, et al. Integration of a dual-mode catheter for ultrasoundimage guidance and HIFU ablation using a 2D CMUT array. 2017 IEEE InternationalUltrasonics Symposium (IUS) [C]. United States of America: IEEE, 2017. 1-4.

  [15] Liao W, Liu W, Rogers J E, et al. Piezeoelectric micromachined ultrasound tranducer array forphotoacoustic imaging. 2013 Transducers & Eurosensors XXVII: The 17th InternationalConference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS &EUROSENSORS XXVII) [C]. United States of America: IEEE, 2013. 1831-1834.

  [16] Lu Y, Heidari A, Horsley D A. A high fill-factor annular array of high frequency piezoelectricmicromachined ultrasonic transducers. Journal of Microelectromechanical Systems[J]. 2014,24(4): 904-913.

  [17] Sadeghpour S, Kraft M, Puers R. Design and fabrication strategy for an efficient lead zirconatetitanate based piezoelectric micromachined ultrasound transducer. Journal of Micromechanicsand Microengineering[J]. 2019, 29(12): 125002.

  [18] Sammoura F, Smyth K, Kim S G. Optimizing the electrode size of circular bimorph plates withdifferent boundary conditions for maximum deflection of piezoelectric micromachinedultrasonic transducers. Ultrasonics[J]. 2013, 53(2): 328-334.

  [19] Akasheh F, Myers T, Fraser J D, et al. Development of piezoelectric micromachined ultrasonictransducers. Sensors and Actuators A: Physical[J]. 2004, 111(2-3): 275-287.

  [20] Muralt P, Ledermann N, Paborowski J, et al. Piezoelectric micromachined ultrasonictransducers based on PZT thin films. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control[J]. 2005, 52(12): 2276-2288.

  [21] Akasheh F, Fraser J D, Bose S, et al. Piezoelectric micromachined ultrasonic transducers:Modeling the influence of structural parameters on device performance. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control[J]. 2005, 52(3): 455-468.

  [22] Vernet J L, Steichen W, Lardat R, et al. PMUTS design optimization for medical probesapplications. 2001 IEEE Ultrasonics Symposium Proceedings An International Symposium(Cat. No. 01CH37263) [C]. United States of America: IEEE, 2001. 899-902.

  [23] 刘鑫鑫。 氮化铝薄膜 MEMS 压电超声换能器设计及应用[D]. 杭州:浙江大学,2019.

  [24] Lu Y, Wang Q, Horsley D A. Piezoelectric micromachined ultrasonic transducers withincreased coupling coefficient via series transduction. 2015 IEEE International UltrasonicsSymposium (IUS)[C]. United States of America: IEEE, 2015: 1-4.

  [25] Rozen O, Block S T, Shelton S E, et al. Air-coupled aluminum nitride piezoelectricmicromachined ultrasonic transducers at 0.3 MHz to 0.9MHz. 2015 28th IEEE InternationalConference on Micro Electro Mechanical Systems (MEMS)[C]. United States of America:IEEE, 2015: 921-924.

  [26] Sammoura F, Akhbari S, Lin L. An analytical solution for curved piezoelectric micromachinedultrasonic transducers with spherically shaped diaphragms. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control[J], 2014, 61(9): 1533-1544.

  [27] Akhbari S, Sammoura F, Eovino B, et al. Bimorph piezoelectric micromachined ultrasonictransducers. Journal of Microelectromechanical Systems[J]. 2016, 25(2): 326-336.

  [28] Lu Y. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing[D].California: University of California, 2015.

  [29] Das N C, Taysing-Lara M, Olver K A, et al. Flip Chip Bonding of 68×68 MWIR LED Arrays.IEEE Transactions on Electronics Packaging Manufacturing[J]. 2009, 32(1): 9-13.

  [30] Jung J, Lee W, Kang W, et al. Review of piezoelectric micromachined ultrasonic transducersand their applications. Journal of Micromechanics and Microengineering[J]. 2017, 27(11):113001.

  [31] Wang M, Zhou Y, Randles A. Enhancement of the transmission of piezoelectric micromachinedultrasonic transducer with an isolation trench. Journal of Microelectromechanical Systems[J].2016, 25(4): 691-700.

  [32] Akhbari S, Sammoura F, Eovino B, et al. Bimorph piezoelectric micromachined ultrasonictransducers. Journal of Microelectromechanical Systems[J]. 2016, 25(2): 326-336.

  [33] Przybyla R, Izyumin I, Kline M, et al. An ultrasonic rangefinder based on an AlN piezoelectricmicromachined ultrasound transducer. SENSORS, 2010 IEEE[C]. United States of America:IEEE, 2010: 2417-2421.

  [34] Dausch D E, Gilchrist K H, Carlson J B, et al. In vivo real-time 3-D intracardiac echo usingPMUT arrays. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J].上海师范大学硕士学位论文 参考文献712014, 61(10): 1754-1764.

  [35] Gijsenbergh P, Halbach A, Jeong Y, et al. Characterization of polymer-based piezoelectricmicromachined ultrasound transducers for short-range gesture recognition applications.Journal of Micromechanics and Microengineering[J]. 2019, 29(7): 074001.

  [36] Donald I, Macvicar J, Brown T G. Investigation of abdominal masses by pulsed ultrasound.The Lancet[J]. 1958, 271(7032): 1188-1195.

  [37] Fenster A, Downey D B. 3-D ultrasound imaging: A review. IEEE Engineering in Medicineand Biology Magazine[J]. 1996, 15(6): 41-51.

  [38] Ter Haar G R. High intensity focused ultrasound for the treatment of tumors.Echocardiography[J]. 2001, 18(4): 317-322.

  [39] 杜功焕, 朱哲民, 龚秀芬。 声学基础[M]. 南京:南京大学出版社, 2001.

  [40] Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristauxhémièdres à faces inclinées. Bulletin de minéralogie[J]. 1880, 3(4): 90-93.

  [41] Lippmann M G. On the principle of the conservation of electricity. The London, Edinburgh,and Dublin Philosophical Magazine and Journal of Science[J]. 1881, 12(73): 151-154.

  [42] Kholkin A L, Pertsev N A, Goltsev A V. Piezoelectric and Acoustic Materials for TransducerApplications[M]. Boston: Springer, 2008. 17-38.

  [43] 冯若。 超声手册[M]. 南京:南京大学出版社, 1999.

  [44] 张福学。 现代压电学。上册[M]. 北京:科学出版社, 2005.

  [45] Akhbari S, Sammoura F, Shelton S, et al. Highly responsive curved aluminum nitride PMUT.2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)[C].

  United States of America: IEEE, 2014: 124-127.

  [46] Jung J, Annapureddy V, Hwang G T, et al. 31-mode piezoelectric micromachined ultrasonictransducer with PZT thick film by granule spraying in vacuum process. Applied PhysicsLetters[J]. 2017, 110(21): 212903.

  [47] Przybyla R, Izyumin I, Kline M, et al. An ultrasonic rangefinder based on an AlN piezoelectricmicromachined ultrasound transducer. SENSORS, 2010 IEEE[C]. United States of America:IEEE, 2010: 2417-2421.

  [48] Yang Y, Zhou D, Li X, et al. Parameter Optimization for Preparing c-Oriented ScAlN ThinFilms. Integrated Ferroelectrics[J]. 2015, 167(1): 17-23.

  [49] Jung J, Lee W, Kang W, et al. Review of piezoelectric micromachined ultrasonic transducersand their applications. Journal of Micromechanics and Microengineering[J]. 2017, 27(11):113001.

  [50] Muralt P. PZT thin films for microsensors and actuators: Where do we stand?. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control [J]. 2000, 47(4): 903-915.

  [51] Kim T, Kim J, Dalmau R, et al. High-temperature electromechanical characterization of AlNsingle crystals. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control[J].2015, 62(10): 1880-1887.

  [52] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: Review of materials, properties,and applications. Journal of Applied Physics[J]. 2006, 100(5): 051606.

  [53] Khan A, Abas Z, Kim H S, et al. Piezoelectric thin films: an integrated review of transducersand energy harvesting. Smart Materials and Structures[J]. 2016, 25(5): 053002.

  [54] 郭嘉骐。 压电微机械超声换能器及其阵列性能提升方法研究[D]. 上海:上海交通大学,2018.

  [55] Farrer N, Bellaiche L. Properties of hexagonal ScN versus wurtzite GaN and InN. PhysicalReview B[J]. 2002, 66(20): 201203.

  [56] Ranjan V, Bellaiche L, Walter E J. Strained hexagonal ScN: A material with unusual structuraland optical properties. Physical Review Letters[J]. 2003, 90(25): 257602.

  [57] Alsaad A, Ahmad A. Piezoelectricity of ordered (ScxGa1-xN) alloys from first principles. TheEuropean Physical Journal B-Condensed Matter and Complex Systems[J], 2006, 54(2): 151-156.

  [58] Hardy M T, Downey B P, Nepal N, et al. Epitaxial ScAlN grown by molecular beam epitaxyon GaN and SiC substrates. Applied Physics Letters[J]. 2017, 110(16): 162104.

  [59] Akiyama M, Kamohara T, Kano K, et al. Enhancement of piezoelectric response in scandiumaluminum nitride alloy thin films prepared by dual reactive cosputtering. AdvancedMaterials[J]. 2009, 21(5): 593-596.

  [60] Akiyama M, Kano K, Teshigahara A. Influence of growth temperature and scandiumconcentration on piezoelectric response of scandium aluminum nitride alloy thin films. AppliedPhysics Letters[J]. 2009, 95(16): 162107.

  [61] Wingqvist G, Tasnadi F, Zukauskaite A, et al. Increased electromechanical coupling in w-ScxAl1? xN. Applied Physics Letters[J]. 2010, 97(11): 112902.

  [62] Moreira M, Bjurstr?m J, Katardjev I, et al. Aluminum scandium nitride thin-film bulk acousticresonators for wide band applications. Vacuum[J]. 2011, 86(1): 23-26.

  [63] Zhang S, Fu W Y, Holec D, et al. Elastic constants and critical thicknesses of ScGaN and ScAlN.Journal of Applied Physics[J]. 2013, 114(24): 243516.

  [64] Yang J, Meng X, Yang C, et al. Influence of N2/Ar-flow ratio on crystal quality and electricalproperties of ScAlN thin film prepared by DC reactive magnetron sputtering. Applied SurfaceScience[J]. 2013, 282: 578-582.

  [65] Yang Y, Zhou D, Li X, et al. Parameter Optimization for Preparing c-Oriented ScAlN ThinFilms. Integrated Ferroelectrics[J]. 2015, 167(1): 17-23.

  [66] Lu Y, Reusch M, Kurz N, et al. Elastic modulus and coefficient of thermal expansion ofpiezoelectric Al1?xScxN (up to x=0.41) thin films. APL Materials[J]. 2018, 6(7): 076105.

  [67] Kurz N, Lu Y, Kirste L, et al. Temperature dependence of the pyroelectric coefficient of AlScNthin films. Physical Status Solidi A [J]. 2018, 215(13): 1700831.

  [68] Wang Q, Lu Y, Mishin S, et al. Design, fabrication, and characterization of scandium aluminumnitride-basedpiezoelectricmicromachinedultrasonictransducers.JournalofMicroelectromechanical Systems[J]. 2017, 26(5): 1132-1139.

  [69] Peng J, Lau S T, Chao C, et al. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers. Applied Physics A[J]. 2010, 98(1): 233-237.

  [70] Fei C, Yang Y, Guo F, et al. PMN-PT single crystal ultrasonic transducer with half-concavegeometric design for IVUS imaging. IEEE Transactions on Biomedical Engineering[J], 2017,65(9): 2087-2092.

  [71] Lu Y. Development and characterization of piezoelectric AlScN-based alloys forelectroacoustic applications[D]. Freiburg im Breisgau: Albert-Ludwigs-Universit?t, 2019.

  [72] Birkholz M. Thin film Analysis by X-ray Scattering[M]. Germany: Wiley-VCH, 2006.

  [73] Goldstein J I, Newbury D E, Michael J R, et al. Scanning electron microscopy and X-raymicroanalysis[M]. Germany: Springer, 2017.

  [74] Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters[J]. 1986,56(9): 930.

  [75] Rugar D, Hansma P. Atomic force microscopy. Physics Today[J]. 1990, 43(10): 23-30.

  [76] Güthner P, Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy.Applied Physics Letters[J]. 1992, 61(9): 1137-1139.

  [77] Jesse S, Mirman B, Kalinin S V. Resonance enhancement in piezoresponse force microscopy:Mapping electromechanical activity, contact stiffness, and Q factor. Applied Physics Letters[J].2006, 89(2): 022906.

  [78] Jesse S, Baddorf A P, Kalinin S V. Dynamic behaviour in piezoresponse force microscopy.Nanotechnology[J]. 2006, 17(6): 1615.

  [79] Liebermann R C. Multi-anvil, high pressure apparatus: a half-century of development andprogress. High Pressure Research[J]. 2011, 31(4): 493-532.

  [80] Itskevich E S. High-pressure cells for studies of properties of solids. Instruments AndExperimental Techniques[J]. 1999, 42(2): 291-302.

  [81] Briggs D. Practical surface analysis. Auger and X-Ray Photoelecton Spectroscory[J]. 1990, 1:151-152.

  [82] Roosendaal S J, Van Asselen B, Elsenaar J W, et al. The oxidation state of Fe(100) after initialoxidation in O2. Surface Science[J]. 1999, 442(3): 329-337.

  [83] 张巧珍。 基于有限元方法的氮化铝薄膜层状结构声表面波器件研究[D]. 上海:上海交通大学,2018.

  [84] 王勖成。 有限单元法[M]. 北京:清华大学出版社,2003.

  [85] 马慧。 COMSOL Multiphysics 基本操作指南和常见问题解答[M]. 北京:人民交通出版社,2009.

  [86] 刘杰坤,马修水,马勰。 激光多普勒测振仪研究综述。激光杂志[J]. 2014(12):5-9.

  [87] Kuball M, Hayes J M, Shi Y, et al. Raman scattering studies on single-crystalline bulk AlN:temperature and pressure dependence of the AlN phonon modes. Journal of Crystal Growth[J].2001, 231(3): 391-396.

  [88] Manjón F J, Errandonea D, Romero A H, et al. Lattice dynamics of wurtzite and rocksalt AlNunder high pressure: Effect of compression on the crystal anisotropy of wurtzite-typesemiconductors. Physical Review B[J]. 2008, 77(20): 205204.

  [89] Yakovenko E V, Gauthier M, Polian A. High-pressure behavior of the bond-bending mode ofAIN. Journal of Experimental and Theoretical Physics[J]. 2004, 98(5): 981-985.

  [90] Liu W, He L, Wang X, et al. 3D FEM analysis of high-frequency AlN-based PMUT arrays oncavity SOI. Sensors[J]. 2019, 19(20): 4450.

  [91] Trolier-McKinstry S, Muralt P. Thin film piezoelectrics for MEMS. Journal ofElectroceramics[J]. 2004, 12(1): 7-17.

  [92] Choi H S, Anderson M J, Ding J L, et al. A two-dimensional electromechanical composite platemodel for piezoelectric micromachined ultrasonic transducers (PMUTs)。 Journal ofMicromechanics and Microengineering[J]. 2009, 20(1): 015013.

  [93] Choi H, Ding J L, Bandyopadhyay A, et al. Finite element analysis of piezoelectric thin filmmembrane structures. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J], 2007, 54(10): 2036-2044.

  [94] Sano K, Karasawa R, Yanagitani T. ScAlN Thick-Film Ultrasonic Transducer in 40-80MHz.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J]. 2018, 65(11):2097-2102.

  [95] Jiang X, Lu Y, Tang H Y, et al. Monolithic ultrasound fingerprint sensor. Microsystems &Nanoengineering[J]. 2017, 3(1): 1-8.

  [96] Wilm M, Reinhardt A, Laude V, et al. Three-dimensional modelling of micromachined-ultrasonic-transducer arrays operating in water. Ultrasonics[J]. 2005, 43(6): 457-465.

  [97] Meeker T R. Publication and proposed revision of ANSI/IEEE standard 176-1987. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control[J]. 1996, 43(5): 717-772.

  [98] Jung J, Kim S, Lee W, et al. Fabrication of a two-dimensional piezoelectric micromachinedultrasonic transducer array using a top-crossover-to-bottom structure and metal bridgeconnections. Journal of Micromechanics and Microengineering[J]. 2013, 23(12): 125037.

  [99] 国家食品药品监督管理局。YY/T 1089-2007 单元式脉冲回波超声换能器的基本电声特性和测量方法[S].北京。中国标准出版社,2007.

  [100] Sadeghpour S, Kraft M, Puers R. Design and fabrication strategy for an efficient leadzirconate titanate based piezoelectric micromachined ultrasound transducer. Journal ofMicromechanics and Microengineering[J]. 2019, 29(12): 125002.

  [101] Caro M A, Zhang S, Riekkinen T, et al. Piezoelectric coefficients and spontaneouspolarization of ScAlN. Journal of Physics: Condensed Matter[J]. 2015, 27(24): 245901.

  [102] Shanthi M, Lim L C, Rajan K K, et al. Complete sets of elastic, dielectric, and piezoelectricproperties of flux-grown [011]-poled Pb(Mg1/3Nb2/3)O3-(28-32)%PbTiO3 single crystals.Applied Physics Letters[J]. 2008, 92(14): 142906.

  致谢

  怀揣对研究生生活的憧憬踏入校园,转眼间已到毕业离别之季。在此,谨向所有帮助过我与鼓励过我的各位老师、同学和亲友表达衷心的谢意!

  感谢我的导师赵祥永研究员,他学识渊博,治学严谨,对科研具有敏锐的洞察力,从本论文工作的选题到最终完成离不开赵老师的悉心指导。赵老师对工作精益求精的态度和为人师表的风范潜移默化地影响着我,除了科研工作上对我的精心教导,赵老师在生活上也予以我无微不至的关心,为我的人生道路点亮明灯,促使我不断地成长和进步。在此,郑重地向我的恩师赵老师道一声感谢!

  感谢上海师范大学的张巧珍老师在我攻读研究生期间给予的指导、帮助和关心,是张老师带我走入仿真的大门,她言传身教,尽职尽责,潜精研思的精神和严谨缜密的思维使我深受感染,感谢张老师耐心解答我的每一个问题,反复认真修改我的文章,遇到困难迎难而上的积极态度让我受益良多,她是良师亦是益友,在此,向张老师道一声深深的感谢!

  本论文工作的完成离不开各位老师和师兄师姐的指导与帮助。感谢上海师范大学的王飞飞老师、王涛老师、秦晓梅老师、杜伟杰老师、唐艳学老师和段志华老师在科研上对我的帮助。感谢中科院苏州纳米所的李加东老师、苗斌老师以及南京理工大学汪尧进老师在实验方面给予我的帮助。感谢上海同步辐射光源的郭智老师和闫帅老师在测试方面予以的帮助。感谢姚蒙师兄和郭嘉骐师兄在仿真上给予我无私的指导和帮助,感谢刘旭强师兄在高压实验方面提供的帮助。还要感谢上海师范大学的薛赛东师兄、谢青秀师姐、胡钰晴师姐、周星彤师姐、吴扬师兄、李强师兄以及其他师兄师姐在科研生活中带给我的帮助和鼓励。

  衷心感谢研究生期间并肩走过的同学和朋友,感谢我的舍友郭文雨、厍文呈和闫明园,感谢她们的陪伴与鼓励,优秀的她们是我学习的榜样。感谢王洁、黄小丽、王巨杉、黎梓浩、郑群飞、肖俊杰、杨梅和李立新在科研上给予的无私帮助以及给我的研究生生活带来了无数乐趣。感谢刘会灵师妹、周迅师妹、吴延辉师弟等其他师弟师妹对我的关心与帮助。

  最后,特别感谢我的父母一直以来对我的支持、鼓励和理解,感谢他们给予我温馨和睦的家庭氛围让我在爱中成长,在此,向我的父母道一声:辛苦了!还要感谢各位亲友对我无条件的支持与鼓励,正是有了这些爱与支持才使我坚定自信地做自己,我将在未来的道路上继续勇往直前!

(如您需要查看本篇毕业设计全文,请您联系客服索取)

相关内容
相关标签:机械毕业设计
好优论文定制中心主要为您提供代做毕业设计及各专业毕业论文写作辅导服务。 网站地图
所有论文、资料均源于网上的共享资源以及一些期刊杂志,所有论文仅免费供网友间相互学习交流之用,请特别注意勿做其他非法用途。
如有侵犯您的版权或其他有损您利益的行为,请联系指出,论文定制中心会立即进行改正或删除有关内容!