ÕªÒª
¡¡¡¡Ëæ׏¤Òµ×Ô¶¯»¯µÄ²»¶ÏÍƽø£¬Æû³µ¡¢Ò½ÁÆ¡¢Ïû·ÑµÈÐÐÒµ¶Ô²úÆ·ÖÊÁ¿Ìá³öÁËеÄÒªÇó¡£
¡¡¡¡ÖáÀ๤¼þ×÷Ϊ¸÷ÐÐÒµ²úÆ·µÄºËÐIJ¿¼þ£¬Æä¼Ó¹¤¾«¶ÈÖ±½ÓÓ°Ïì×Ô¶¯»¯»úеÉ豸µÄÔËÐÐ״̬ºÍʹÓÃÊÙÃü£¬ÌرðÊÇÔÚ¾«ÃÜÒÇÆ÷ÖУ¬ÖáµÄ³ß´ç¾«¶ÈÒªÇóÍùÍù´ïµ½Î¢Ã×¼¶¡£ÓÉÓÚÎÒ¹úÔÚÖáÀ๤¼þ¾«ÃܲâÁ¿·½ÃæÈÔÈ»´æÔÚÃ÷ÏÔ²»×㣬Òò´Ë¼Ó¾çÁËÎÒ¹úÆóÒµ¶Ô¹úÍâ¼¼ÊõµÄÒÀÀµ£¬ÓÈÆäÔڽǵãºÍ R ½Ç¶¨Î»·½·¨·½ÃæÓë¹úÍâ²î¾àÉõÔ¶£¬Òò´Ë£¬ÉîÈëÑо¿½ÇµãºÍ R ½Ç¶¨Î»·½·¨¾ßÓÐÖØÒªÒâÒå¡£
¡¡¡¡Õë¶ÔÖáÀ๤¼þ±íÃæë´Ì¡¢ÓÍÎ۵ȸ½×ÅÎï¶ÔÊÓ¾õ²âÁ¿Öнǵã¼ì²âµÄ¸ÉÈÅÎÊÌ⣬Ìá³öÒ»ÖÖ»ùÓÚÇúÂÊÓë»Ò¶È¸´ºÏµÄ½ÇµãÑÇÏñËض¨Î»·½·¨¡£¸Ã·½·¨¶ÔͼÏñ¸ÐÐËȤÇøÓò(Region ofInterest£¬ROI)½øÐÐÐÎ̬ѧºÍË«±ßÂ˲¨µÈÔ¤´¦Àí£¬Ïû³ýë´ÌºÍ²¿·ÖÓÍÎ۵ȸ½×ÅÎ¸ù¾ÝÇúÂÊÌØÐÔ¼ì²âºòÑ¡½Çµã£¬ÀûÓýǵ㴦ÇúÂʽǵĶà³ß¶È²»±äÐÔ½øÐÐα½ÇµãµÄԤɸѡ£¬ÀûÓÃÒԽǵãΪԲÐĵÄÔ²Ðδ°¿ÚÄÚ»Ò¶ÈÐÅÏ¢½øÒ»²½Åųýα½Çµã£¬ÊµÏֽǵã´Ö¶¨Î»£»¸ù¾Ý´Ö¶¨Î»½ÇµãºÍÇøÓò¶ËµãµÄÁ¬Ïߣ¬¶ÔÔʼͼÏñµÄ±ßÔµµã½øÐÐɸѡ£¬²¢¶ÔɸѡºóµÄ±ßÔµµã½øÐÐ×îС¶þ³ËÖ±ÏßÄâºÏ£¬ÊµÏֽǵ㾫׼¶¨Î»¡£ÊµÑé±íÃ÷£¬¸Ã·½·¨ÓÐЧ¿Ë·þÁËÖáÀ๤¼þ±íÃ渽×ÅÎï¶Ô½Çµã¼ì²âµÄ¸ÉÈÅÎÊÌ⣬Çҽǵ㶨λËã·¨µÄÖظ´ÐÔ´ïµ½ 0.005mm£¬×¼È·¶È´ïµ½ 0.004mm¡£
¡¡¡¡Õë¶ÔÂÖÀª¸½×ÅÎï¶ÔÊÓ¾õ²âÁ¿ÖÐ R ½Ç¼ì²âµÄ¸ÉÈÅÒÔ¼°¶ÌÔ²»¡ÄâºÏ²»Îȶ¨µÄÎÊÌ⣬Ìá³öÒ»ÖÖ»ùÓÚ Snake Ä£Ðͺ͵ü´ú¼«ÐÔת»»»Ø¹é(Polarity Transformation Regression£¬PTR)½áºÏµÄÔ²»¡ÄâºÏ·½·¨¡£Ê×ÏȶÔͼÏñ¸ÐÐËȤÇøÓò½øÐÐÔ¤´¦Àí£»ÀûÓà Canny Ëã×Ó½øÐбßÔµÌáÈ¡£¬ÊµÏÖ±ßÔµµÄ³õ¶¨Î»£»È»ºóͨ¹ý Snake Ä£ÐͶԱßÔµ½øÐÐÓÅ»¯£»²ÉÓà Zernike Õý½»¾Ø»ñÈ¡ÑÇÏñËؼ¶±ßÔµµã£»×îºóͨ¹ýµü´ú PTR Ë㷨ʵÏÖ R ½ÇÖÐÐĵľ«È·¶¨Î»¡£ÊµÑé±íÃ÷£¬¸Ã·½·¨ÓÐЧ¿Ë·þÁËÖáÀ๤¼þ±íÃ渽×ÅÎï¶Ô R ½Ç¼ì²âµÄ¸ÉÈÅÎÊÌ⣬Ìá¸ßÁË R ½Ç¶¨Î»Ëã·¨µÄÖظ´ÐÔºÍ׼ȷ¶È£¬Æ䶨λ¾«È·¶È´ïµ½ 0.005mm£¬×¼È·¶È´ïµ½ 0.0034mm£»°ë¾¶ÄâºÏ¾«È·¶ÈΪ0.002mm£¬×¼È·¶ÈΪ 0.006mm¡£
¡¡¡¡ÎªÑéÖ¤²âÁ¿ÏµÍ³µÄ×ÛºÏÐÔÄÜ£¬ÀûÓÃÏßÕóÏà»ú¡¢Ô¶ÐľµÍ·¡¢ºÍƽÐб³¹â´î½¨ÖáÀ๤¼þÊÓ¾õ¼ì²âϵͳ£¬¶Ô¶à¸öµç»úÖáµÄ¶à¸ö¼ì²âÏî½øÐвâÊÔ·ÖÎö£¬´Ó¾²Ì¬ºÍÈ¡·ÅÁ½ÖÖÌõ¼þÏ»ñÈ¡´ý²â¼þͼÏñ£¬Í³¼Æ¾²Ì¬Í¼Ïñ½á¹ûµÄ¼«Öµ¼ÆËã³öϵͳ²âÁ¿¾«È·¶È£¬Í³¼ÆÈ¡·ÅͼÏñ½á¹ûÓëÕæʵֵµÄÎó²î×î´óÖµ¼ÆËã³öϵͳ²âÁ¿×¼È·¶È£¬×îºó¶Ô±ÈʵÑé½á¹û£¬·ÖÎöÆä×ۺϲâÁ¿¾«È·¶È¡¢×¼È·¶ÈÒÔ¼°Îó²îÒòËØ¡£ÊµÑé±íÃ÷£¬ÖáÀà²âÁ¿ÏµÍ³µÄƽÃæ³ß´ç²âÁ¿µÄ¾«È·¶È´ïµ½0.007mm£¬×¼È·¶È´ïµ½ 0.05mm£¬Âú×ã¿Í»§µÄ¼ì²âÒªÇó¡£
¡¡¡¡¹Ø¼ü´Ê£ºÖáÀ๤¼þ£»½Çµã¶¨Î»£»ÇúÂÊ£»ÑÇÏñËØ£»R ½Ç¶¨Î»£»µü´ú PTR
Abstract
¡¡¡¡With the continuous advancement of industrial automation, automotive, medical, consumer and other industries have put forward new requirements for product quality. Shaft parts are the core components of products in various industries. The machining accuracy directly affects the operating status and service life of automated machinery and equipment.
¡¡¡¡Especially in precision instruments, the dimensional accuracy of shafts often reaches micrometers. Because China still has obvious deficiencies in the precision measurement of shaft shafts, it has aggravated the dependence of Chinese companies on foreign technology, especially in terms of corner point and R-angle location methods, which is a far difference from foreign countries. Therefore, this article deeply studies corners and R-angle location technology is of great significance.
¡¡¡¡Aiming at the problem of interference of corner detection in vision measurement on the surfaces of shaft parts such as burrs and oil stains, a corner sub-pixel location method based on curvature and gray combination is proposed. This method performs morphological and bilateral filtering preprocessing on the Region of Interest (ROI) of the image to eliminate fixtures such as burrs and partial oil stains; it detects candidate corners based on the curvature characteristics and utilizes multi-scales of curvature angles at the corners. Invariance:
¡¡¡¡pre-screen false-corners, use the gray information in the circular window centered on the corners to further exclude the false-corners, and achieve coarse-corner location; according to the connection line between the coarse location corners and the end points of the area, the original The edge points of the image are filtered, and the filtered edge points are fitted with least square straight lines to achieve precise location of the corners. Experiments show that this method effectively overcomes the interference problem of the attachment on the surface of the shaft parts, and the repeatability of the corner location algorithm reaches 0.005mm and the accuracy reaches 0.004mm.
¡¡¡¡Aiming at the interference of R-angle detection in visual measurement and the instability of short circular arc fitting for contour attachments, an arc fitting method based on Snake model and iterative Polarity Transformation Regression (PTR) was proposed. First, ROI is preprocessed; the edge extraction is performed using the Canny operator to achieve the initial location of the edge; then the edge is optimized by the Snake model; the sub pixel level edge points are acquired by the Zernike orthogonal moment; and finally, Finally, an iterative PTR algorithm is used to achieve accurate location of the R-angle center. Experiments show that this method effectively overcomes the problem of interference of R-angle detection by attachments on the shaft surface and improves the repeatability and accuracy of the R-angle location algorithm. The location repeatability is 0.005mm and the accuracy is 0.0034mm. The fitting repeatability is 0.002mm and the accuracy is 0.006mm.
¡¡¡¡In order to verify the comprehensive performance of the measurement system, a visual inspection hardware platform for shaft parts was built using line-array cameras, telecentric lenses, and parallel backlights. Multiple detection items for multiple motor shafts were tested and analyzed, from static and pick-and-place. Get the image of the object under the condition, calculate the extremum of the static image result to calculate the repeatability of the system measurement, and calculate the accuracy of the system measurement by calculating the maximum error between the result of capturing and releasing the image and the real value.
¡¡¡¡Finally, compare the experimental results and analyze its synthesis. Measurement repeatability, accuracy, and error factors. The experiment shows that the repeatability of the plane size measurement of the shaft parts measurement system reaches 0.007mm and the accuracy reaches 0.05mm, which meets the customer's detection requirements.
¡¡¡¡Keywords: shaft parts; corner location; curvature; sub-pixel; R-angle location; iterative PTR
¡¡¡¡ÖáÀ๤¼þÊÇ»úе²úÆ·ÖÐÖØÒªµÄÐýתÀ๤¼þ£¬ÆäÖÖÀàÖڶ࣬Èç½×ÌÝÖᡢ׶¶ÈÐÄÖá¡¢¹âÖá¡¢¿ÕÐÄÖá¡¢ÇúÖᡢ͹ÂÖÖáµÈ£¬ÇÒÓ¦Óù㷺£¬ÓÈÆäÔÚÆû³µ£¬Ò½ÁÆ£¬µç»úµÈÐÐÒµ¡£ÖáÀ๤¼þÔÚ¼Ó¹¤µÄ¹ý³ÌÖУ¬¹¤¼þ¸÷²¿·ÖµÄ³ß´ç¡¢ÐÎ×´¡¢·½ÏòºÍλÖõȼ¸ºÎÁ¿ÄÑÒÔ´ïµ½ÀíÏë״̬£¬ÑÏÖØÓ°ÏìÆäʹÓÃÐÔÄÜ[1]¡£ËùÒÔÔÚʹÓÃ֮ǰÐèÒª½øÐÐÑϸñµÄ²âÁ¿£¬È·±£Âú×ãÒ»¶¨ÐÔÄÜÖ¸±ê²ÅÄÜͶÈëºóÐøµÄʹÓá£
¡¡¡¡ÎÒ¹ú´ó¶àÊýÖáÀ๤¼þ¼Ó¹¤ÆóÒµ£¬ÈÔȻʹÓýӴ¥Ê½Á¿¾ß½øÐÐÈ˹¤¼ì²â¡£´«Í³µÄÈ˹¤²âÁ¿·½·¨¾ßÓÐÖ÷¹ÛÐÔ¡¢ÎÞ·¨Á¿»¯¡¢¼ì²âЧÂʵͣ¬¸üÖØÒªµÄÊDzúÆ·¾«¶ÈµÃ²»µ½±£ÕÏ£¬ÄÑÒÔÂú×ã´óÅúÁ¿¡¢¿ì½Ú×à¡¢¸ß¾«¶ÈµÄ²úÆ·²âÁ¿ÒªÇó[2]¡£ÏÖÓеÄÖáÀ๤¼þ²âÁ¿É豸£¬×Ô¶¯»¯³Ì¶È²î£¬¿É²âÁ¿µÄ²ÎÊýµ¥Ò»£¬´ó¶¼ÔËÓÃÔÚ³éÑùµ÷²éºÍСÅúÁ¿²âÁ¿ÖУ¬²»ÄÜÂú×ã²úÆ·È«¼ìµÄÒªÇó¡£Ò»Ð©¸ß¾«¶ÈÖáÀà²âÁ¿ÒÇÆ÷£¬ÈçÈý×ø±ê²âÁ¿ÒÇ¡¢ÍòÄܲⳤÒÇ¡¢Ô²Öù¶ÈÒǵȣ¬³É±¾¸ß£¬¶Ô²Ù×÷»·¾³ÒªÇóÑϸñ£¬²âÁ¿¹ý³Ì±È½ÏºÄʱ¡£
¡¡¡¡½üÄêÀ´Ëæ×Å¡¶ÖйúÖÆÔì 2025¡·µÄÖð²½Âäʵ£¬»úÆ÷ÊÓ¾õÐÐÒµ½øÈë¸ßËÙ·¢Õ¹½×¶Î£¬ÔÚÖÇÄÜÖÆÔì¡¢ÎÞÈ˼ÝÊ»¡¢ÖÇÄÜ°²·ÀÁìÓòʵÏÖÁËÖØ´óÍ»ÆÆ¡£»úÆ÷ÊÓ¾õÊÇÀûÓÃÏà»ú×÷ΪÐÅÏ¢²É¼¯À´Ô´£¬Í¨¹ýÊÓ¾õËã·¨´¦ÀíͼÏñÊý¾Ý£¬´Ó¶øʵÏÖÉ豸µÄ¼ì²â¡¢Ê¶±ð¡¢²âÁ¿ºÍ¶¨Î»¡£Óɴ˿ɼû£¬»ùÓÚ»úÆ÷ÊÓ¾õµÄÖáÀ๤¼þ²âÁ¿¼¼ÊõÖð²½³ÉΪ²âÁ¿¼¼ÊõÁìÓòµÄм¼ÊõÖ®Ò»¡£
¡¡¡¡Òò´Ë£¬±¾ÎÄÉè¼ÆÁËÒ»ÖÖ»ùÓÚ»úÆ÷ÊÓ¾õµÄ·Ç½Ó´¥²âÁ¿½â¾ö·½°¸£¬Á¦Çó°Ñ×îеĻúÆ÷ÊÓ¾õ¼¼ÊõÓëÖáÀ๤¼þ³ß´çÎó²î²âÁ¿¸ß¶È½áºÏ£¬¶ÔÖáÀ๤¼þ²âÁ¿ÎÊÌâ½øÐÐÉîÈëÑо¿¡£Ä¿Ç°£¬Ïà±È½ÏÓÚ¹úÍâ³ÉÊìÎȶ¨µÄÖáÀà¹âѧ¼ì²â¼¼Êõ£¬¹úÄÚÖáÀ๤¼þÊÓ¾õ²âÁ¿ÏµÍ³ÈÔÈ»´æÔÚÒÔÏÂÎÊÌ⣺1) ²¿·Ö¼ì²âÏîµÄ¾«¶È²»¸ß£¬Èç½ÇµãºÍ R ½Ç¼ì²â£»2) ÖáÀ๤¼þ±íÃæÕ³¸½ÓÍÎÛ¡¢»Ò³¾µÈ¸½×ÅÎïµÄ¸ÉÈÅ£¬¶ÔÖáÀ๤¼þ¼ì²âµÄÎȶ¨ÐÔ¾ßÓнϴóÓ°Ïì[4]£¬ÓÈÆäÊǽǵãºÍ R ½Ç¼ì²â¡£ÓÉ´Ë£¬ÖصãÑо¿½ÇµãºÍ R ½ÇµÄ¼ì²â·½·¨¶ÔÖáÀà¹âѧ¼ì²âϵͳµÄ·¢Õ¹¾ßÓÐÖØÒªµÄÑо¿ÒâÒåºÍʵÓüÛÖµ¡£
¡¡¡¡ÔçÔÚ 2000 Äê֮ǰ£¬¹úÍâ¾ÍÍƳöÁ˹âѧɨÃèÔÀíµÄÖáÀà×ۺϲâÁ¿»ú¡£ºóÀ´¾¹ý½ü 20ÄêµÄ·¢Õ¹£¬µ½Ä¿Ç°ÒѾÏ൱³ÉÊ죬ÔÚ¹ú¼ÊÊг¡ÉÏ£¬ÖáÀ๤¼þ×Ô¶¯²âÁ¿ÏµÍ³»ù±¾ÉÏÓÉÒâ´óÀû Vici Vision ¹«Ë¾¡¢ÈðÊ¿ Sylvac ¹«Ë¾¡¢µÂ¹ú Hommel µÈ¹«Ë¾Ìṩ[5]¡£ÕâЩÀÏÅƵÄ×Ô¶¯²âÁ¿ÏµÍ³É̲»¶Ï¸ïÐÂ×Ô¼ºµÄ¼¼Êõ£¬²»¶ÏµØÍƳö¸÷ÀàÏȽøµÄÖáÀà¹âѧ×Ô¶¯²âÁ¿ÏµÍ³¡£
¡¡¡¡Òâ´óÀû Vici Vision ¹«Ë¾ÓÐ×Å 37 ÄêµÄ¹âѧ²âÁ¿»úµÄÑз¢¾Ñ飬Æä²úÆ·¿ÉÖ±½ÓÓÃÓÚÉú²ú³µ¼ä£¬²Ù×÷¼òµ¥¡£¸Ã¹«Ë¾Éú²úµÄÖáÀà²âÁ¿ÒǵÄÖÖÀà·±¶à£¬Èç MTLX5£¬ÆäÍâ¹ÛÈçͼ 1-1Ëùʾ£¬Ó¦ÓÃÓÚ²âÁ¿ÑÀ¿ÆÒÆÖ²Îﲿ¡¢ÉúÎïҽѧ²¿¼þ¡¢ÊÖ±í²¿¼þ¡¢Ï¸Ð¡»úеÁ㲿¼þµÄ²âÁ¿£»MTL300/500Evo¡¢MTL850/1250Ergon¡¢MTL500/850/1250X-Stream µÈ¹âѧÖáÀà²âÁ¿ÒÇÓ¦ÓÃÓÚ͹ÂÖÖá²âÁ¿¡¢ÇúÖá²âÁ¿¡¢´«¶¯Öá²âÁ¿¡¢°ëÖá²âÁ¿¡¢Çý¶¯Öá²âÁ¿¡¢ÎÐÂÖҶƬ²âÁ¿¡¢µç»úÖá²âÁ¿¡¢ÒºÑ¹ÖáºÍ»îÈû²âÁ¿¡£¸Ã¹«Ë¾Ñз¢µÄ²âÁ¿ÏµÍ³¸ù¾ÝÂÖÀªÍ¶Ó°ÔÀí½øÐмì²â£¬Æä²âÁ¿ÏîÄ¿°üÀ¨Ö±¾¶¡¢°ë¾¶¡¢³¤¶È¡¢½Ç¶È¡¢µãµ½Ïß»òµãµ½µã¾àÀë¡¢¶Ô³Æ¶È¡¢Æ½Ðжȡ¢´¹Ö±¶È¡¢ÂÝÎƵȳߴç²âÁ¿£»Ò²°üÀ¨Ðýתֱ¾¶¡¢Ô²½Ç¡¢Í¬Öá¶È¡¢Í¬ÐĶȡ¢Ô²Öù¶È[6]
¡¡¡¡µÈÐÎλ¹«²î²âÁ¿¡£ÓÉÓÚ¸ÃϵͳÊǶàÏî¼ì²âϵͳ£¬È«²¿¼ì²âÏîµÄ²âÁ¿ÔÚ¼¸ÃëÖÁ¼¸Ê®ÃëÄÚÍê³É£¬ÊǽÚԼʱ¼äºÍÀͶ¯Á¦µÄÓÐЧ¹¤¾ß£¬ÇÒ±ÜÃâÈ˹¤²âÁ¿µÄÖ÷¹ÛÐÔ¡£´Ë²âÁ¿Òǵĸ÷·½ÃæÒÑ´ïµ½ÐÐÒµÁìÏÈˮƽ£¬Ò»Ö±»ÈÏΪÊÇÔö¼Ó²úÁ¿£¬Ìá¸ßÉú²úЧÂÊ£¬¼õÉÙ´ÎÆ·µÄ×îºÃ;¾¶¡£
¡¡¡¡ÈðÊ¿ Sylvac ¹«Ë¾³ÉÁ¢ÓÚ 1969 Ä꣬ÊǾ«ÃÜÊýÏÔ²âÁ¿ÒÇÆ÷ÖÆÔìÉÌ¡£Ä¿Ç°£¬Sylvac ¹«Ë¾ÓÖ½«¹âѧ²âÁ¿ÒÇÆ÷Ôö¼Óµ½ÆäÉú²úÏßÖУ¬¿ì¶Á¡¢¾«È·µÄ¹âѧ³ß´ç²âÁ¿ÒÇÊÊÓÃÓÚËùÓеĻØÐýÌåÁã¼þ£¬¿É²âÁ¿ 150 ¶à¸ö²âÁ¿ÌØÕ÷£¬ÓÃÓÚ¿ØÖÆ×îÑϸñÒªÇóµÄ³ß´çºÍ¼¸ºÎ¹«²î¡£Sylvac ¹«Ë¾Éè¼ÆµÄµÚһ̨ÎÔʽ¹âѧÖáÀàɨÃèÒÇ——SYLVAC SCAN 52£¬Èçͼ 1-2 Ëùʾ£¬×¨ÃÅÓÃÓÚ¿¿½ü»ú´²µÄ³µ¼ä²âÁ¿£¬ÊÊÓÃÓÚÊ׼졢¹ý³Ì¿ØÖÆ¡¢³é¼ì»ò 100%È«¼ì£¬Êdzµ¼äÖÊÁ¿¿ØÖƵĸïÃüÐÔת±ä¡£SYLVAC SCAN 52 µÄ²âÁ¿ÔÀíÈçͼ 1-3 Ëùʾ£¬¼¯³ÉÓÉ2 ? 7000¸öÏßÐÔÕóÁÐ×é³É²¢¾ßÓÐרÀûµÄ7.5°ÏµÍ³µÄ¸ß·Ö±æÂÊ CCD ´«¸ÐÆ÷£¬Ï൱ÓÚÒ»¸ö·Ö±æÂÊΪ 200 ÍòÏñËصÄÉãÏñ»ú¡£µ±Áã¼þµÄÂÖÀª±»Í¶Ó°Ê±£¬ÕâЩ´«¸ÐÆ÷¸ù¾Ý¸Ð¹â¹æÔò¶¯×÷£¬Äܹ»¼ì²âµ½ÏñËصÄÇá΢±ä»¯¡£¸Ã²âÁ¿ÏµÍ³£¬¼¯³ÉÁË»úе¡¢¹âѧ¡¢µçÆøºÍ¼ÆËã»ú£¬ÓµÓкÏÀíµÄ½çÃ棬×î´ó³Ì¶ÈµÄʵÏÖϵͳÁé»îÐÔ¡£
¹¤Òµ×Ô¶¯»¯ÖÐÖáÀ๤¼þÊÓ¾õ¾«ÃܲâÁ¿·½·¨£º
MTLX5 ¹âѧ²âÁ¿ÒÇ
ÖáÀà¹âѧ²âÁ¿ÏµÍ³ÊµÎïͼ
²âÁ¿ÏîµÄ±êעʾÒâͼ
ÖáµÄ¼ì²âÏî±êעͼ
A¡¢B¡¢C ÖáµÄÎå¸ö¼ì²âÏîµÄ¾«È·¶Èͳ¼Æ½á¹û
A¡¢B¡¢C ÖáµÄÎå¸ö¼ì²âÏîµÄ׼ȷ¶Èͳ¼Æ½á¹û
Ŀ ¼
¡¡¡¡Õª Òª
¡¡¡¡Abstract
¡¡¡¡µÚÒ»Õ Ð÷ÂÛ
¡¡¡¡¡¡¡¡1.1 ¿ÎÌâÑо¿µÄ±³¾°¼°ÒâÒå
¡¡¡¡¡¡¡¡1.2 ÖáÀ๤¼þ²âÁ¿ÏµÍ³µÄ¹úÄÚÍâÏÖ×´
¡¡¡¡¡¡¡¡1.3 ÖáÀ๤¼þ²âÁ¿ÏµÍ³¹Ø¼ü·½·¨µÄÑо¿ÏÖ×´
¡¡¡¡¡¡¡¡1.4 ±¾ÎÄÖ÷ÒªÑо¿ÄÚÈÝ
¡¡¡¡¡¡¡¡1.5 ÂÛÎĵÄ×éÖ¯¼Ü¹¹
¡¡¡¡µÚ¶þÕ ϵͳ×ÜÌå·½°¸ºÍ±ê¶¨·½·¨
¡¡¡¡¡¡¡¡2.1 ϵͳӲ¼þ×é³É
¡¡¡¡¡¡¡¡2.2 ϵͳÈí¼þʵ
¡¡¡¡¡¡¡¡2.3 ÏßÕóÏà»ú±ê¶¨·½·¨Ñо¿
¡¡¡¡¡¡¡¡¡¡¡¡2.3.1 ÏßÕóÏà»ú³ÉÏñÄ£ÐÍ
¡¡¡¡¡¡¡¡¡¡¡¡2.3.2 ÏßÕóÏà»ú±ê¶¨
¡¡¡¡¡¡¡¡2.4 ±¾ÕÂС½á
¡¡¡¡µÚÈýÕ ÖáÀ๤¼þ½Çµã¾«È·¶¨Î»
¡¡¡¡¡¡¡¡3.1 ͼÏñÔ¤´¦Àí
¡¡¡¡¡¡¡¡3.2 ½Çµã´Ö¶¨Î»
¡¡¡¡¡¡¡¡¡¡¡¡3.2.1 ÇúÂʽǵĶ¨ÒåºÍ¼ÆËã
¡¡¡¡¡¡¡¡¡¡¡¡3.2.2 α½ÇµãÓëÕæʵ½ÇµãÁÚÓòÔ²Ðδ°¿Ú»Ò¶È²îÒì
¡¡¡¡¡¡¡¡¡¡¡¡3.2.3 ¸Ä½øµÄ½Çµã¼ì²âËã·¨
¡¡¡¡¡¡¡¡3.3 ½ÇµãÑÇÏñËض¨Î»
¡¡¡¡¡¡¡¡3.4 ʵÑéÑéÖ¤
¡¡¡¡¡¡¡¡¡¡¡¡3.4.1 ÊÓ¾õÏà»ú±ê¶¨
¡¡¡¡¡¡¡¡¡¡¡¡3.4.2 ¸Ä½øËã·¨µÄʵÑé½á¹û
¡¡¡¡¡¡¡¡¡¡¡¡3.4.3 ½Çµã¶¨Î»µÄ¾«È·¶ÈºÍ׼ȷ¶ÈÑéÖ¤
¡¡¡¡¡¡¡¡3.5 ±¾ÕÂС½á
¡¡¡¡µÚËÄÕ ÖáÀ๤¼þ R ½Ç¾«È·¶¨Î»
¡¡¡¡¡¡¡¡4.1 ͼÏñÔ¤´¦Àí
¡¡¡¡¡¡¡¡4.2 ±ßÔµ´Ö¶¨Î»
¡¡¡¡¡¡¡¡4.3 Snake Ä£ÐÍÓÅ»¯±ßÔµ
¡¡¡¡¡¡¡¡4.4 ÑÇÏñËض¨Î»
¡¡¡¡¡¡¡¡4.5 Ô²»¡ÖÐÐĶ¨Î»
¡¡¡¡¡¡¡¡¡¡¡¡4.5.1 Ô²µ½Ö±ÏßµÄͶӰ±ä»»
¡¡¡¡¡¡¡¡¡¡¡¡4.5.2 PRT Ëã·¨
¡¡¡¡¡¡¡¡¡¡¡¡4.5.3 µü´úµÄ PTR Ëã·¨
¡¡¡¡¡¡¡¡4.6 ʵÑéÑéÖ¤
¡¡¡¡¡¡¡¡¡¡¡¡4.6.1 Snake ÓÅ»¯µÄʵÑé½á¹û
¡¡¡¡¡¡¡¡¡¡¡¡4.6.2 µü´úµÄ PRT Ëã·¨µÄʵÑé½á¹û
¡¡¡¡¡¡¡¡¡¡¡¡4.6.3 R ½Ç¶¨Î»ºÍ°ë¾¶ÄâºÏµÄ¾«È·¶ÈºÍ׼ȷ¶ÈµÄʵÑéÑéÖ¤
¡¡¡¡¡¡¡¡4.7 ±¾ÕÂС½á
¡¡¡¡µÚÎåÕ ÖáÀ๤¼þ²âÁ¿ÊµÑéÓëÎó²î·ÖÎö
¡¡¡¡¡¡¡¡5.1 ʵÑé×°ÖÃ
¡¡¡¡¡¡¡¡5.2 ³ß´çÎó²î²âÁ¿ÊµÑé
¡¡¡¡¡¡¡¡¡¡¡¡5.2.1 Öᾶ²âÁ¿ÊµÑé
¡¡¡¡¡¡¡¡¡¡¡¡5.2.2 ½Ç¶È²âÁ¿ÊµÑé
¡¡¡¡¡¡¡¡¡¡¡¡5.2.3 Óë½ÇµãÏà¹ØµÄ²âÁ¿ÊµÑé
¡¡¡¡¡¡¡¡¡¡¡¡5.2.4 Óë R ½ÇÏà¹ØµÄ²âÁ¿ÊµÑé
¡¡¡¡¡¡¡¡5.3 ×ۺϲâÁ¿Îó²î·ÖÎö
¡¡¡¡¡¡¡¡5.4 ±¾ÕÂС½á
¡¡¡¡µÚÁùÕ Ö÷ÒªÑо¿½áÂÛÓëÕ¹Íû
¡¡¡¡¡¡¡¡6.1 Ö÷ÒªÑо¿½áÂÛ
¡¡¡¡¡¡¡¡6.2 Õ¹Íû
¡¡¡¡Ö л
¡¡¡¡²Î¿¼ÎÄÏ×
¡¡¡¡¸½Â¼£º ×÷ÕßÔÚ¹¥¶Á˶ʿѧλÆڼ䷢±íµÄÂÛÎÄ
£¨ÈçÄúÐèÒª²é¿´±¾Æª±ÏÒµÉè¼ÆÈ«ÎÄ£¬ÇëÄúÁªÏµ¿Í·þË÷È¡£©